论文部分内容阅读
神经网络在气象上的应用往往是采用固定学习率的BP算法建模,学习过程易出现振荡现象和网络存在冗余连接等缺陷,基于此对神经网络进行了改进。利用时间序列分析方法对样本数据进行处理,用改进后的神经网络对时间序列样本数据进行训练预测,创建了时间序列动态学习率神经网络模型。最后用库车县1997—2007年四季的平均气温值作样本数据进行训练,其训练精度和拟合度都达到很高的标准,用该模型预测了库车县2008年的气温。通过实例证明这个模型在气象预测领域有一定的实用价值。