论文部分内容阅读
Background:Increasing evidences indicate that microRNAs (miRNAs) are functionally related to the development and progression of various human diseases.Inferring disease-related miRNAs can be helpful in promoting disease biomarker detection for the treatment,diagnosis,and prevention of complex diseases.Methods:To improve the prediction accuracy of miRNA-disease association and capture more potential diseaserelated miRNAs,we constructed a precise miRNA global similarity network (MSFSN) via calculating the miRNA similarity based on secondary structures,families,and functions.Results:We tested the network on the classical algorithms:WBSMDA and RWRMDA through the method of leaveone-out cross-validation.Eventually,AUCs of 0.8212 and 0.9657 are obtained,respectively.Also,the proposed MSFSN is applied to three cancers for breast neoplasms,hepatocellular carcinoma,and prostate neoplasms.Consequently,82%,76%,and 82% of the top 50 potential miRNAs for these diseases are respectively validated by the miRNA-disease associations database miR2Disease and oncomiRDB.Conclusion:Therefore,MSFSN provides a novel miRNA similarity network combining precise function network with global structure network of miRNAs to predict the associations between miRNAs and diseases in various models.