论文部分内容阅读
AIM:To study whether over-starvation aggravates intestinal mucosal injury and promotes bacterial and endotoxin translocation in a high-altitude hypoxic environment.METHODS:Sprague-Dawley rats were exposed to hy-pobaric hypoxia at a simulated altitude of 7000 m for 72 h.Lanthanum nitrate was used as a tracer to detect intestinal injury.Epithelial apoptosis was observed with terminal deoxynucleotidyl transferase dUTP nick end labeling staining.Serum levels of diamino oxidase(DAO),malondialdehyde(MDA),glutamine(Gln),superoxide dismutase(SOD) and endotoxin were measured in intestinal mucosa.Bacterial translocation was detected in blood culture and intestinal homogenates.In addition,rats were given Gln intragastrically to observe its protective effect on intestinal injury.RESULTS:Apoptotic epithelial cells,exfoliated villi and inflammatory cells in intestine were increased with edema in the lamina propria accompanying effusion of red blood cells.Lanthanum particles were found in the intercellular space and intracellular compartment.Bacterial translocation to mesenteric lymph nodes(MLN) and spleen was evident.The serum endotoxin,DAO and MDA levels were significantly higher while the serum SOD,DAO and Gln levels were lower in intestine(P< 0.05).The bacterial translocation number was lower in the high altitude hypoxic group than in the high altitude starvation group(0.47±0.83 vs 2.38±1.45,P<0.05).The bacterial translocation was found in each organ,especially in MLN and spleen but not in peripheral blood.The bacterial and endotoxin translocations were both markedly improved in rats after treatment with Gln.CONCLUSION:High-altitude hypoxia and starvation cause severe intestinal mucosal injury and increase bacterial and endotoxin translocation,which can be treated with Gln.
AIM: To study whether over-starvation aggravates intestinal mucosal injury and promotes bacterial and endotoxin translocation in a high-altitude hypoxic environment. METHODS: Sprague-Dawley rats were exposed to hy-pobaric hypoxia at a simulated altitude of 7000 m for 72 h. Lanthanum nitrate was used as a tracer to detect the intestinal injury. Epithelial apoptosis was observed with terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Levels of diamino oxidase (DAO), malondialdehyde (MDA), glutamine (Gln), superoxide dismutase and endotoxin were measured in intestinal mucosa. Bacterial translocation was detected in blood culture and intestinal homogenates. In addition, rats were given Gln intragastrically to observe its protective effect on intestinal injury .RESULTS: Apoptotic epithelial cells, exfoliated villi and inflammatory cells in intestine were increased with edema in the lamina propria accompanying effusion of red blood cells.Lanthanum particles were found in the interce Llular space and intracellular compartment. Bacterial translocation to mesenteric lymph nodes (MLN) and spleen was evident. The serum endotoxin, DAO and MDA levels were significantly higher in the serum SOD, DAO and Gln levels were lower in intestine (P <0.05). The bacterial translocation number was lower in the high altitude hypoxic group than in the high altitude starvation group (0.47 ± 0.83 vs 2.38 ± 1.45, P <0.05). The bacterial translocation was found in each organ, especially in MLN and spleen but not in peripheral blood. The bacterial and endotoxin translocations were both markedly improved in rats after treatment with Gln. CONCLUSION: High-altitude hypoxia and starvation cause severe intestinal mucosal injury and increase bacterial and endotoxin translocation, which can be treated with Gln.