论文部分内容阅读
概念流动的出现及数据的高维性增加了数据流特征选择的复杂性。信息增益是最有效的特征选择算法之一,但计算量大。对信息增益做了等价替换,提出一种基于改进信息增益的混合增量特征选择(IFS)算法。该算法首先利用与分类器无关的评价函数选出候选特征集合,然后将分类器作用于候选特征集合,利用分类精度作为评价标准去选择特征子集,在遇到概念漂移时重新选择特征子集。通过在超平面数据集和UCI数据集上的实验,表明基于IFS算法的分类器能够很快地适应概念漂移,并且比基于全部特征的分类算法有更高的精度。