论文部分内容阅读
现有反k邻域的流数据离群点挖掘算法存在一些不足之处,即需要遍历每个数据对象,计算复杂度较高,稳定性较差。为了解决这些问题,本文提出一种改进的基于反k近邻的离群点检测算法OL-ORND。该算法采用细胞邻域思想,加入伪反k邻域点概念(反k邻域为空集的点对象),增加了算法的严密性,从而大大提高了算法的效率和准确率。实验表明,算法具有较好的性能。