论文部分内容阅读
为了探究高分六号(GF-6)卫星多光谱相机(PMS)影像提取水体的潜力,分别构建全卷积神经网络(FCN-8s)、U-Net及U-Net优化(VGGUnet1、VGGUnet2)4种神经网络进行了水体提取研究。基于水体提取结果对比分析,确定优选模型为VGGUnet1;提出基于组合损失函数FD-water loss(focal-dice-water loss)的VGGUnet1网络模型,并与归一化差分水指数(norma-lized water index, NDWI)阈值法、最大似然分类法、支持向量机分