论文部分内容阅读
证明了一类约束矩阵方程WAWXW^~BW^=D,R(X)包含于R[(AW)^K1],N(X)包含N[(W^~B)K^2]有唯一解并给出其解的Gramer法则,其中A∈C^m×n,Ind(AW)=K1,Ind(BW^~)=K^-1,B∈Cp×q,W^~∈Cq×p,Ind(WA)=K2,Ind(W^~B)=K^2,and D∈n×p,R(D)包含于R[(WA)^K2],N(D)包含N[(BW^)K^-1]