论文部分内容阅读
Objective: To study and compare the hemocompatibility of MWCNTs and hydroxyl modificated MWCNTs (MWCNTs-OH). Methods: MWCNTs and MWCNTs-OH were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, water contact angle assays, platelet-adhesion and hemolytic rate assays. Results: The results showed that the two MWCNTs had a similar surface topography and MWCNTs-OH were functionalized with hydroxyl groups on their surfaces. Water contact angle assays indicated that MWCNTs were hydrophobic materials, whereas MWCNTs-OH was hydrophilic. The platelet-adhesion assays displayed that the platelet-adhesion rate of MWCNTs-OH was much lower than MWCNTs. The hemolytic rate assays showed that the hemolytic rates of both MWCNTs were lower than the standard value of 5%. Conclusion: MWCNTs-OH shows superior anticoagulant capacity over MWCNTs. Both MWCNTs and MWCNTs-OH are nonhemolytic materials.
Methods: MWCNTs and MWCNTs-OH were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, water contact angle assays, platelet-adhesion and hemolytic rate assays. The results showed that the two MWCNTs had a similar surface topography and MWCNTs-OH were functionalized with hydroxyl groups on their surfaces. Water contact angle assays indicated that MWCNTs were hydrophobic materials, whereas MWCNTs-OH was hydrophilic. The platelet- adhesion assays displayed that the platelet-adhesion rate of MWCNTs-OH was much lower than MWCNTs. The hemolytic rate assays showed that the hemolytic rates of both MWCNTs were lower than the standard value of 5%. Conclusion: MWCNTs-OH shows much higher than MWCNTs. over MWCNTs. Both MWCNTs and MWCNTs-OH are nonhemolytic materials.