论文部分内容阅读
利用1996—2015年中国的高空探测资料和地面观测数据,挑选发生降水的数十万个样本将其分为降雨和降雪两类事件,抽象为二分类问题,采用深度学习网络技术构建降水相态判识模型,并用2016—2017年的数据进行测试检验,针对2018年1月下旬中国一次大范围雨雪天气过程进行个例检验,在此基础上探讨了深度学习网络在降水相态判识和预报中的应用。主要结论如下:基于深度学习网络判识模型的判识准确率为98.2%,雨、雪的TS评分分别为97.4%和94.4%,相应空报率为1.7%和2.0%,漏报率为1.0%和3.7%,较传