论文部分内容阅读
鉴于尺度不变特征变换(SIFT)结构复杂域,k-d树匹配算法对于高维特征计算量过大,对SIFT特征信息利用少并且匹配的结果有大量误差,因此提出一种基于感知哈希与尺度不变特征变换的快速拼接算法.首先,使用感知哈希算法,提取匹配图像与待匹配图像的HASH指纹,快速识别出两幅图像的相似部分;然后,计算并提取出相似区域SIFT特征点.在特征点匹配算法上,替换传统的k-d树算法,利用SIFT特征点的主方向以及坐标位置信息过滤掉不必要的特征点匹配,减少匹配耗时;最后,用加权最佳拼接缝图像融合算法消除突变,完成拼