论文部分内容阅读
Effects of nitrogen addition on glass formation and mechanical properties of the Ti42.5Cu40Zr10Ni5Sn2.5metallic glass were systematically investigated. It was found that a small amount of nitrogen addition facilitated the glass formation by suppressing formation of the competing eutectic structure. Unlike large atomic size elements such as Hf and Pd which usually deteriorate specific strength, nitrogen can also increase the specific strength of the current Ti-based BMGs. The results are not only helpful for understanding glass-forming ability in general, but also useful in developing cost-effective, high-performance Ti-based bulk metallic glasses with enhanced glass-forming ability.
Effects of nitrogen addition on glass formation and mechanical properties of the Ti42.5Cu40Zr10Ni5Sn2.5metallic glass were systematically investigated. It was found that a small amount of nitrogen addition facilitated the glass formation by suppressing formation of the competing eutectic structure. Unlike large atomic size elements such as Hf and Pd which usually deteriorate specific strength, nitrogen can also increase the specific strength of the current Ti-based BMGs. The results are not only helpful for understanding glass-forming ability in general, but also useful in developing cost-effective, high-performance Ti-based bulk metallic glasses with enhanced glass-forming ability.