论文部分内容阅读
Ni-Co alloys were electroplated from sulphate electrolyte using addition agents including sodium gluconate,boric acid and cysteine on copper foil by the galvanostatic technique and ultrasound waves.The chemical composition,surface morphologies,crystalline structure and hardness of the Ni-Co alloys were studied using energy dispersive spectroscopy,scanning electron microscope,X-ray diffraction and Vickers testing method,respectively.The effect of current density and addition agents on the microstructure and morphology of Ni-Co alloys were examined.The appropriate concentration of additives and ultrasound waves were found to produce fine and smooth crystals leading to higher hardness of Ni-Co alloys.The microhardness of the Ni-Co alloys was varied between 4860–7530 HV.The surface morphology of coatings was changed from granular to fine due to using of gluconate,boric acid,cysteine and ultrasound waves.The mechanical properties of nanocrystalline Ni-Co alloys showed an increase of the hardness with the growing of Ni content in the alloy.The X-ray diffraction studies indicated that nanocrystalline structure was face-centred cubic for pure Ni and Ni-Co alloys with Co content in the range of 1–75 wt.%.A hexagonal closed-package structure was obtained for pure Co and Ni-Co alloys with the cobalt content with range of 75–99wt.%.
Ni-Co alloys were electroplated from sulphate electrolyte using addition agents including sodium gluconate, boric acid and cysteine on copper foil by the galvanostatic technique and ultrasound waves.. The chemical composition, surface morphologies, crystalline structure and hardness of the Ni-Co alloys were studied were using energy dispersive spectroscopy, scanning electron microscope, respectively, the effect of current density and addition agents on the microstructure and morphology of Ni-Co alloys were examined.The appropriate concentration of additives and ultrasound waves were found to produce fine and smooth crystals leading to higher hardness of Ni-Co alloys. The microhardness of the Ni-Co alloys were varied between 4860-7530 HV. The surface morphology of coatings was changed from granular to fine due to using of gluconate, boric acid, cysteine and ultrasound waves.The mechanical properties of nanocrystalline Ni-Co alloys showed an increase of the h Ardness with the growing of Ni content in the alloy. X-ray diffraction studies indicate that nanocrystalline structure was face-centered cubic for pure Ni and Ni-Co alloys with Co content in the range of 1-75 wt.%. A hexagonal closed-package structure was obtained for pure Co and Ni-Co alloys with the cobalt content with range of 75-99 wt.%.