论文部分内容阅读
The hot deformation of an Al-Cu-Mg alloy was studied in the two temperature ranges (room temperature-300℃ and 400℃-480℃). The rate-independent flow curves are typical of elasto-plastic response with significant work hardening followed by strain softening below 300℃. Similar dislocation structures with high density tangled into grain interiors were observed by TEM, which suggests that the process of obstacles arresting mobile dislocations results in this macroscopically rate-independence. At 400-480℃, all rate dependent flow behaviors characterized by a continuous softening after an initial work hardening at a small plastic strain show large tensile elongations. Long dislocation segments around the second phases infer their good mobility to climb across obstacles. Grain boundary morphology observed by TEM suggests that the capacity of the grain boundaries to absorb the dislocations sensitively accounts for the rate-dependent mechanical properties.
The hot-deformation of an Al-Cu-Mg alloy was studied in two temperature ranges (room temperature-300 ° C and 400 ° -480 ° C). The rate-independent flow curves are typical of elasto-plastic response with significant work hardening by strain softening below 300 ° C. Similar dislocation structures with high density tangled into grain interiors were observed by TEM, which suggests that the process of obstacles arresting mobile dislocations results in this macroscopically rate-independence. At 400-480 ° C, all rate dependent flow 202. behavior characterized by a continuous softening after an initial work hardening at a small plastic strain show large tensile elongations. Long dislocation segments around the second phases infer their good mobility to climb across obstacles. Grain boundary morphology observed by TEM suggests that the capacity of the grain boundaries to absorb the dislocations sensitively accounts for the rate-dependent mechanical properties.