论文部分内容阅读
The effect of temperature on the rock fracture permeability is a very important factor in the prediction of the permeability of enhanced geothermal systems and in reservoir engineering. In this study, the flow-through experiments were conducted on a single limestone fracture at different temperatures of 25oC, 40oC and 60oC, and with differential pressures of 0.3 MPa and 0.4 MPa. The experimental results suggest a complex temporal evolution of the fracture aperture. The aperture increases considerably with increasing temperature and reduces gradually to a steady value at a stable temperature. The results of three short-term experiments (QT-1, QT-2, QT-3) indicate an exponential relationship between the permeability and the temperature change ratio (DT/T ) , which provides a further evidence that the rising temperature increases the aperture. It is shown that the changing temperature has its influence on two possible accounts:the chemical dissolution and the pressure dissolution. These two processes have opposite impacts on the fracture permeability. The chemical dissolution increases the permeability with a rising temperature while the pressure disso-lution reduces the permeability with a stable temperature. These make a very complex picture of the permeability evolution. Our results show that the fracture permeability reduces 39.2%when the temperature increases by 15oC (during the 25oC-40 C interval) and 42.6% when the temperature increases by 20oC (during the 40oC-60oC interval). It can be concluded that the permeability decreases to a greater extent for larger increases in temperature.