论文部分内容阅读
针对铅锌烧结过程的强非线性、时变等特点,运用智能集成建模的思想,提出一种模糊分类变系数透气性状态预测方法。首先深入机理分析和工况参数相关性分析研究,采用神经网络方法建立工艺参数和时间序列透气性预测模型;然后借助于模糊组合器实现两个子模型的有机组合,设计了模糊分类变系数综合透气性集成预测模型结构,其中加权系数由工况波动程度确定。运行结果表明:提出的集成模型具有较高的预测精度和较强的自学习能力,并且在工况波动严重的情况下,仍然具有好的预测效果,该模型具有一定的灵敏度和鲁棒性。