【摘 要】
:
基于激光同时定位与地图构建(simultaneous localization and mapping, SLAM)技术,不仅能够实现车辆在未知环境下的实时定位,还能高效地获取环境的三维地理空间信息,近年来受到了无人驾驶领域的广泛关注。在几何结构匮乏的隧道中,仅依赖几何信息无法配准点云,因此传统激光SLAM方法难以在隧道中应用。为解决这一问题,本文在LOAM的基础上,提出一种点云强度信息增强的改进
论文部分内容阅读
基于激光同时定位与地图构建(simultaneous localization and mapping, SLAM)技术,不仅能够实现车辆在未知环境下的实时定位,还能高效地获取环境的三维地理空间信息,近年来受到了无人驾驶领域的广泛关注。在几何结构匮乏的隧道中,仅依赖几何信息无法配准点云,因此传统激光SLAM方法难以在隧道中应用。为解决这一问题,本文在LOAM的基础上,提出一种点云强度信息增强的改进激光SLAM技术。首先,改进特征提取方法,提出基于点云柱面投影图的自适应特征提取方法,从单帧点云中提取直
其他文献
全球生产网络(GPNs)非常重视跨国公司地方嵌入与区域发展的战略耦合模式及影响机制,然而以往研究相对聚焦于资本密集型或技术密集型企业,着重探讨产业联系、技术外溢、社会网络等要素的影响,而对以富士康为代表的劳动密集型跨国企业并未给予足够关注。本研究以郑州富士康为案例,融合劳工地理学和新经济地理学的理论视角,基于2017—2021年对郑州富士康的追踪调研,研究发现:(1)在全球网络动力与本土地域动力相
从自动驾驶汽车到智能汽车,再到智能网联汽车,智能驾驶汽车技术及产业的快速发展,测绘与遥感技术起到了重要的支撑作用。本文首先介绍了国内外智能驾驶汽车的进展及其与常规汽车的区别,基于科学技术发展3次重要浪潮的视角,对比分析和归纳了自动驾驶与测绘遥感的发展历程及其核心技术驱动力。然后从顶层规划与政策环境、环境感知与计算决策车辆关键技术、高精地图与导航定位基础支撑关键技术、车路协同信息交互关键技术4个方面
车辆跟踪技术旨在从连续场景中估计目标车辆的状态,对智能车辆的环境感知、场景理解和目标行为预测起着至关重要的作用。基于激光雷达的感知系统能够提供准确的车辆检测结果,但依据检测结果进行车辆跟踪时,存在车辆朝向估计失准导致跟踪误差大、轨迹预测稳定性差的难题,尤其在目标距离较远、点云较为稀疏的情况下。考虑到大多数时刻车辆行驶方向与车道线方向基本一致,本文提出一种基于数字地图中车道朝向先验信息的车辆跟踪增强
高精地图逐渐成为自动驾驶不可或缺的组成部分,但是其数据模型和表达方式尚未形成统一标准,特别是在生产制作和数据交换阶段,缺乏具备通用性和大规模应用能力的数据模型。针对这一问题,本文分析了当前主流高精地图数据模型NDS、OpenDRIVE和lanelet的优缺点,提出了一种通用化的高精地图数据模型Whu map model。车道模型方面,采用车道组为数据管理单元,由同一路段上的一个或者多个车道组成。车
针对现有方法在较稀疏的16线激光雷达数据中提取道路边界点准确度较低的问题,本文提出一种道路空间特征与测量距离相结合的道路边界点提取方法:采用随机采样一致性(RANSAC)算法进行预处理,快速剔除道路区域外点;判断同条激光线中点与点之间的水平连续性和垂直连续性,去除大部分道路表面点;根据道路边界点的测量模型,结合原始测量距离修正保留的道路边界点,初步剔除非道路边界点;通过判断起始于被保留点的两个水平
自动驾驶车辆的自动化驾驶程度越高,对高精地图的要求越高。智能化的高精地图能够为L5级别自动驾驶车辆提供所需地图数据,是未来高精地图发展的重要方向。基于目前高精地图的构建方法,本文首先提出多智能体协同高精地图构建的定义,分析其构建框架。然后,对多智能体数据采集路径规划、多源异构一体化数据融合与表达、道路场景认知、智能高精地图融合、智能高精地图更新等关键技术进行了研究,提出了可行的技术方案。最后,分析
交叉口是构成道路网络的基础与核心要素,起到了连接道路和承载转向的重要作用。在城市路网中,交叉口不仅数量众多、形态多样,而且结构复杂、大小不一。单一数据源对于道路交叉口的描述能力有限,难以做到道路交叉口的全面、精确识别。为此,本文设计了一种从车辆轨迹与遥感影像中识别道路交叉口的多元集成方法。首先,集成形态学处理、密度峰值聚类与张量投票提取种子交叉口,将其作为小样本集;然后,据此采用协同训练机制,分别