新型汽车用Q&P钢的研究现状与发展趋势

来源 :材料导报 | 被引量 : 0次 | 上传用户:lewy540
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着大气环境问题的日益加剧且全球范围面临着能源危机,在未来的几十年里,节能减排仍然是全球性的研究主题.汽车行业被要求在不降低安全性的前提下减轻车身质量,以达到节能减排的目的.汽车的轻量化推动先进高强钢从第一代发展到如今的第三代.先进高强钢主要通过合金成分设计、热轧、冷轧、热处理等工艺的配合对其微观结构进行调控来实现轻量化和安全性,且其内部变形机制研究更有助于把握性能调控过程.第一代、第二代汽车用钢的弊端主要有以下两方面:一方面,主要以铁素体等软相作为基体,导致钢的综合力学性能差,难以实现真正的轻量化;另一方面,第二代汽车钢性能的提升是以大量合金元素的添加为代价,生产成本较高,而且在商业化大生产当中铸造、热处理等工艺难以精细控制,存在诸多弊端.因此,第三代汽车钢得到良性的发展,其综合力学性能填补了第一代与第二代汽车钢之间的空白.Q&P钢作为典型代表,利用淬火-配分工艺,对多相、亚稳态和多尺度的微结构进行精细控制,可以获得马氏体、铁素体和奥氏体的混合组织.与第二代相比,第三代汽车钢的合金元素含量更低,满足了降低成本的要求.面心立方(FCC)与体心立方(BCC)的混合结构使得第三代汽车钢具有高强塑积(抗拉强度×延伸率)的特点,它的性能已接近时代汽车用钢的目标水平.本文概述了新型汽车用Q&P钢的发展历程,介绍了合金元素的作用、成型时的回弹,按照热处理工艺参数顺序(加热温度、淬火温度、配分温度、配分时间)阐述了工艺优化的内在原理.总结了塑性变形的强韧机制——“四种效应、两种机制”,思考了Q&P钢动态力学性能对工程实际应用的重要性,根据重大研究成果提出新的Q&P钢强化建议——晶界相变强化.最后描述了当前Q&P钢基础理论研究和工业化发展所面临的问题,并对该领域进行了展望.
其他文献
钙钛矿太阳电池及其叠层电池发展迅速,成为当前光伏领域的研究热点。有机无机卤化钙钛矿材料具有吸收系数高、带隙可调、制备工艺简单等优点,其单结太阳电池实验室效率从2009年的3.8%迅速提升到25.2%,两端钙钛矿/硅叠层太阳电池效率达到29.15%。钙钛矿太阳电池种类丰富,依据器件结构主要分为介孔型钙钛矿太阳电池和平面型(nip结构和pin结构)钙钛矿太阳电池。大量研究工作通过钝化工程、添加剂工程、能级匹配工程、组分工程等先进技术获得高质量的钙钛矿吸收层和光电性能好、低成本、无污染的电荷传输层,提升电荷提取
养护制度是影响混凝土微结构形成的关键因素,进而决定了混凝土的性能。早在20世纪60年代,国内外学者就尝试通过控制养护温度或湿度来改善混凝土的性能,但由于控制变量的单一性,其对混凝土性能的提升效果有限。随着现代混凝土技术的发展,同时控制养护温度、湿度,甚至压力的蒸汽养护与蒸压养护应运而生。蒸汽养护和蒸压养护主要通过生成大量高密度C-S-H凝胶来为混凝土提供强度,且随着蒸压养护的持续,C-S-H凝胶向强度高、密度大的托勃莫来石转变,促进混凝土强度进一步增长。然而,蒸汽养护与蒸压养护在快速提高混凝土强度的同时,
聚丙烯酸酯是一类由丙烯酸酯或甲基丙烯酸酯为主要原料合成的高分子聚合物,它具有良好的力学性能、耐候性能和耐酸碱性能,其制备工艺简单,成本低廉,被广泛用作皮革涂饰、建筑涂料和木材的成膜材料。但由于纯聚丙烯酸酯的抗菌性能、力学性能和热稳定性能较差,限制了其应用范围,因此,可通过化学改性和结构设计改善其性能。利用环氧树脂改性丙烯酸酯得到的环氧丙烯酸酯兼具两者的优点,拥有良好的耐候性和热稳定性。目前环氧树脂改性丙烯酸酯主要有三种方法:物理共混法、酯化改性法、接枝共聚法。聚氨酯一般由异氰酸酯和含活泼氢的化合物聚合而成
铝合金具有成本低、强度质量比高、可加工性能良好等优点,被广泛应用于航空、交通、建筑等领域。但铝合金表面易发生小孔腐蚀和晶间腐蚀,需要进行防腐处理才能满足应用要求。稀土元素铈因具有特有的电子层结构和物理化学特性,是制备铝合金稀土转化膜最具优越性的元素,以此为防腐基材开发的稀土转化膜技术被认为是最有可能替代铬酸盐钝化的技术。目前所报道的铈基转化膜工艺有化学浸泡法、溶胶-凝胶法、电化学法、磁控溅射法等。其中,化学浸泡法制备过程简单,但铈离子的转化和沉积速率较难控制一致,膜层微米级裂纹较多;溶胶-凝胶法制备的膜层
环保与能源问题对汽车工业的可持续发展提出了严峻的挑战。在不可再生资源日益紧张的情况下,发展新能源汽车可以减少国家石油资源消耗,削减车辆运行阶段大气污染物的排放,对调整能源结构、改善城市空气质量,保障人群健康均有重要意义。新能源汽车是低碳经济的必然选择,代表汽车产业的发展趋势。无取向硅钢是汽车驱动电机的核心材料之一。新能源汽车驱动电机最大转速由每分钟几千转提高到几万转甚至高达20万转,工作频率由50 Hz提高到数百数千赫兹,这就要求材料在高频下必须具有低铁损;驱动电机启动、加速时要有高的扭矩,即材料必须具有