论文部分内容阅读
氧化镓(β-Ga2O3)单晶是继碳化硅(SiC)和氮化镓(GaN)之后,制造超高压功率器件、深紫外光电子器件、高亮度LED等高性能半导体器件的新一代半导体材料,大尺寸低缺陷氧化镓单晶的制备方法以及高表面质量氧化镓晶片的超精密加工技术是实现氧化镓半导体器件工业应用的瓶颈之一.针对易产生结构缺陷的氧化镓单晶的制备,系统阐述焰熔法、提拉法、光浮区法、导模法、布里奇曼法等氧化镓单晶制备方法的国内外研究进展,通过对比不同方法制备氧化镓单晶的晶体生长速度、晶体尺寸和内部缺陷等,分析不同制备方法的优缺点,指出大尺寸低缺陷氧化镓单晶制备方法的未来发展趋势;针对硬度高、脆性大、各向异性大、极易解理破碎的氧化镓晶片的超精密加工技术,详细介绍国内外在超精密加工氧化镓晶片的表面材料去除机理、亚表面损伤产生机理与演变规律,以及氧化镓晶片超精密磨削、研磨和抛光工艺等方面的研究进展,分析氧化镓晶片在加工过程中极易解理破碎的原因和目前采用游离磨料研磨工艺加工氧化镓晶片的局限性,提出未来实现大尺寸氧化镓晶片高效率高表面质量加工的工艺方法.分析表明,在氧化镓单晶制备方面,导模法将是未来批量化制备大尺寸低缺陷氧化镓单晶的最佳方法,但生长过程中气氛的选择与调控、不同缺陷的产生机理与抑制方法以及p型氧化镓单晶的掺杂方法等问题亟需解决.在氧化镓晶片超精密加工方面,基于工件旋转磨削原理的金刚石砂轮超精密磨削技术将是实现大尺寸氧化镓晶片高效高表面质量加工的有效方法,但氧化镓单晶延性域去除和解理破碎的临界磨削条件、表面质量和加工效率约束下的砂轮参数和磨削参数的选择等问题还亟待系统研究,才能为氧化镓晶片的超精密磨削加工提供理论指导.