基于客户Web时空行为轨迹的兴趣点预测方法

来源 :科技导报 | 被引量 : 0次 | 上传用户:gaoliqiang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
客户兴趣点预测是大数据环境下提高电子商务推荐精度的关键,针对现有客户兴趣预测未综合考虑客户多种行为和时序时间的影响问题。为研究一种基于客户Web时空行为轨迹的兴趣点预测方法,构建了包含客户、时间、行为和兴趣点四层子网的客户Web时空行为超网络模型,并引入行为影响因子,提出基于超边相似性的兴趣点预测算法,在建立连通矩阵的基础上,通过邻接矩阵计算、超三角形判定和超边相似度计算,得到相似度最高的超边,该超边对应的兴趣点即为预测结果。实验结果表明,该方法在时间误差允许范围内,兴趣点预测准确度随时间精度的减小而增加,与传统的标签预测方法相比,预测准确度由56.2%提高至74%。
其他文献
机器视觉技术已广泛应用到农业生产的诸多领域。综合国内外优秀研究成果,阐述了现阶段机器视觉在农业方面应用的主要形式,介绍了机器视觉在农作物精选与质量检测、植物生长信息监测、农田视觉导航等应用方向的研究成果,通过分析其创新性的图像处理算法、机器视觉系统的组成,提出了当前机器视觉农业应用仍存在可靠性差、成本高、智能化水平不高等问题。结合当前机器视觉在各种领域的研究和应用情况,对未来机器视觉在农业应用的发
随着经济的发展与社会的进步,语文作为小学生学习的主要课程之一,受到人们越来越广泛的重视关注,然而小练笔作为语文课程的重要组成部分,课堂小练笔指的就是小学语文教师在传
期刊