论文部分内容阅读
录音设备来源识别是通过分析已获取的数字语音信号从而确定其录制设备的一种技术,属于数字音频盲取证.本文提出了一种基于改进PNCC特征和两步区分性训练的录音设备识别方法,由于音频中的静音包含了完整的设备信息,且不受说话人和文本等因素的影响,因此从静音段提取改进的PNCC特征,利用了PNCC的长时帧分析去除背景噪声对设备信息的影响.在模型方面,以GMM-UBM为基准模型,并通过两步区分性训练调整集内设备模型和通用背景模型,提升模型区分能力.该方法对于30种设备闭集识别的平均正确识别率为90.23%;对于15个集