论文部分内容阅读
强大的计算能力使得GPGPU在通用计算领域得到了广泛的应用。然而,GPGPU的SIMT(Single Instruction Multiple Threads)工作方式,使其执行效率受到应用中不一致分支行为(Branch Divergence)的严重影响。虽然人们提出了线程交换方法来减小分支带来的性能损失,但这种方法往往会引入额外的访存操作,不仅在一定程度上减少了线程交换优化的性能收益,还增加了功耗。首先举例说明线程交换范围对程序性能和功耗的影响;然后提出了一种减少线程交换所引入的额外访存操作的方法。实验