论文部分内容阅读
基于图像重建出的三维点云模型通常会包含许多离群点,这些离群点可能孤立存在或密集聚集在一起形成点簇,也可能分布在模型周围甚至附着在模型表面。通过一种检测方法很难有效滤除多种分布状态的离群点,因此,提出了综合的离群点监测算法。首先通过空间距离剔除与模型主体较远的离群点,并通过构建空间拓扑关系加快离群点搜索速度;然后利用边界匹配法,将较小点簇分别与最大点簇进行对比,滤除模型周围离群点簇;最后采用改进的K-means算法,根据RGB颜色值特征对点云数据进行聚簇分类,结合已识别的离群点,检测和滤除附着在模型表