论文部分内容阅读
以连杆轴承为研究对象,对振动信号进行经验模态分解(Empirical Mode Decomposition,EMD)分解得到若干本征模态函数(Intrinsic Mode Function,IMF),通过能量占比法选出最优的IMF分量并对其进行Gabor变换,提出了一种基于EMD—Gabor变换的信号分析方法。通过分析频带能量累加曲线随连杆轴承不同故障程度的变化,提取出能够反应连杆轴承不同故障程度的频带能量,以此作为特征向量结合BP神经网络算法进行故障识别。