基于图卷积网络的交通预测综述

来源 :北京工业大学学报 | 被引量 : 0次 | 上传用户:a4198673
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
交通预测是智能交通系统中的关键问题之一,精准的交通预测对于城市交通运营调整、物流运输产业提质增效以及公众出行规划等交通需求具有重要作用.近年来,多种用于解决交通预测问题的深度学习的框架已经被提出,其中图卷积网络(graph convolutional network,GCN)及其变体在各类交通预测模型中脱颖而出,取得了可观的准确率.因此,对基于GCN的交通流预测模型进行归纳总结,从图卷积的基本定义出发,以频域图卷积和空域图卷积为主,介绍GCN的基本原理.随后,通过对图时空网络、图自编码器以及图注意力网络的
其他文献
深度学习技术在多种视觉任务中表现出优异的性能,特别是深度学习技术的发展大大促进了细粒度图像识别任务的进步.细粒度图像识别的目的在于正确识别子对象类别,例如鸟类中的不同子类别.由于细粒度图像数据通常需要具有专家知识才能够进行有效识别与标注,获取难度比较高,同时,由于细粒度类别直接具有小的类间差异性和大的类内差异性特点,需要模型能够捕捉到细微的有区分性的局部特征,这两方面原因导致这项任务极具挑战性.首