论文部分内容阅读
支持向量机(SVM)是在统计学习理论基础上发展起来的一种新的机器学习方法.具有泛化能力强,全局最优等特点.我们针对于传统的支持向量机算法忽略了当采取的训练集中有噪声干扰的情况,通过改造原有的经验风险和调节核函数中的参数,达到抑制或者减弱随机噪声干扰的目的,并具体地给出了抗高斯白噪声的支持向量机模型.