【摘 要】
:
飞机测试可模拟飞行环境,验证飞机功能符合性和性能精准性.近年来,飞机装配过程已逐步转变至三维装配工艺设计,而飞机测试仍局限于通过文档形式进行测试任务描述和过程执行.基于模型定义(MBD)对飞机测试顶层设计进行了研究,提出测试工艺设计概念和测试工艺数字化定义方法.将飞机全过程测试分为4个阶段,形成从测试设计到测试结果的工艺模型定义,并实现部分工程化验证.结果表明:基于MBD的测试工艺数字化定义结果可作为唯一数据源,实现飞机测试的统一表达与信息传输.
【机 构】
:
航空工业成都飞机工业(集团)有限责任公司,成都 610092;北京航空航天大学 自动化科学与电气工程学院,北京 100083
论文部分内容阅读
飞机测试可模拟飞行环境,验证飞机功能符合性和性能精准性.近年来,飞机装配过程已逐步转变至三维装配工艺设计,而飞机测试仍局限于通过文档形式进行测试任务描述和过程执行.基于模型定义(MBD)对飞机测试顶层设计进行了研究,提出测试工艺设计概念和测试工艺数字化定义方法.将飞机全过程测试分为4个阶段,形成从测试设计到测试结果的工艺模型定义,并实现部分工程化验证.结果表明:基于MBD的测试工艺数字化定义结果可作为唯一数据源,实现飞机测试的统一表达与信息传输.
其他文献
针对基于高细粒度信道状态信息(channel state information,CSI)的室内定位指纹数据冗余大、解析复杂的问题,提出一种基于堆叠稀疏自动编码器和支持向量机(support vector machine,SVM)的CSI室内定位方法.该方法首先融合物理层信道信息的幅值与相位数据,利用堆叠稀疏自动编码器在非线性指纹特征空间提取深层定位特征;然后,生成稀疏特征指纹,通过支持向量分类器完成目标位置确定.稀疏特征指纹的应用将CSI指纹库体积缩小约92.6%,同时,实验结果证明该方法可在视距与非视
为了研究余代数中余倾斜挠类和包络余模之间的关系,首先引入余模的(预)包络和finendo的定义并研究它们的性质.然后,引入极大余倾斜余模和包络余模,并证明余倾斜挠类和极大余倾斜余模之间存在一个双射.最后,得到了在余代数上当余倾斜挠类是包络类时,它可以由包络余模唯一表示.
为了有效提升工程技术人才非技术能力培养质量,从政策、文献和专家的视角,对工程教育非技术能力中“个人和团队”指标进行表征.团队中,工程技术人才要懂得如何构建共同愿景、融入团队文化,做好团队协同,具备大局意识和担当意识,以及执行、协作和领导能力.以此探索搭建工程教育非技术能力中“个人和团队”的三级指标体系,运用层次分析法分配权重,从而构建准确、客观、可操作性强的工程教育非技术能力“个人和团队”评价指标体系.指标体系的构建有助于培养方案的诊断与改进,从而提升工程技术人才培养质量.
剧烈的急减速行为是影响交通运行安全和效率的重要因素之一.基于控制器局域网络(controller area network,CAN)总线设备获得的机动车行驶轨迹数据,设计了基于阈值条件的小汽车急减速行为诊断方法.随后,从初始速度、减速持续时间、平均减速度等角度分析了小汽车急减速的基本特征,并挖掘了小汽车急减速行为与交通拥堵状态的关联特征.最后,进行了急减速风险路段诊断与急减速行为聚类分析的案例讨论.结果表明:急减速的持续时间越短,其平均减速度越大;而初始速度越大,其平均减速度越大.急减速发生概率与道路交通
短程反硝化作为厌氧氨氧化反应基质亚硝酸盐(NO2--N)获取的新途径,近年来受到广泛关注.短程反硝化与厌氧氨氧化耦合的污水脱氮工艺具有重要应用潜力.然而,城市污水基质浓度较低且波动频繁,有效实现厌氧氨氧化菌持留与富集是该工艺稳定脱氮的关键.针对上述问题,构建了基于生物膜的短程反硝化耦合厌氧氨氧化工艺,采用2种结构不同的生物填料为载体,对比系统长期脱氮性能,重点考察氮负荷降低过程中系统氮素转化规律及菌群活性变化,深入分析生物膜胞外聚合物(extracellular polymeric substances,
从开采、管理和控制不同地区的污染的角度,评估地下水脆弱性以确定这些资源的优先次序是重要的.研究的目的是基于DRASTIC-LU参数以及空间和非空间数据驱动的方法来估算Birjand平原含水层的地下水(硝酸盐质量浓度)脆弱性.研究提出新的组合方法来确定(Birjand平原含水层)地下水脆弱性分区中合适的DRASTIC-LU参数,即将具有指数和双平方核的地理加权回归(geographically weighted regression,GWR)和人工神经网络(artificial neural network
随着医疗大数据和人工智能技术的快速发展,基于结构磁共振影像采用卷积神经网络(convolutional neural networks,CNN)对阿尔茨海默症(Alzheimer\'s disease,AD)进行研究已逐渐成为神经科学的研究热点之一.为了进一步推动三维CNN应用于神经影像研究,综述了基于三维CNN的结构磁共振影像分析在AD分类中的研究进展.首先,回顾了机器学习技术应用于AD分类的发展变化;其次,从方法角度介绍了三维CNN架构变化及其应用于AD分类的研究进展;最后,讨论了将三维CNN应用
电子信息设备工作时无意发射的电磁波中包含有用信息,会导致电磁信息泄漏,从而威胁设备的信息安全.现有的电磁信息泄漏检测方法,在复杂现场环境下,难以从具有不确定性的电磁泄漏信号中提取有用信息.面向电磁信息安全问题,开展了电磁信息泄漏检测研究,提出了一种基于深度学习的检测方法.设计了一个适用于电磁泄漏信号的一维卷积神经网络,并结合改进的梯度加权类激活映射方法,在未知电磁信息泄漏特征的前提下,通过深度学习实现电磁信息泄漏特征的智能标定和自动提取,从而解决了现场环境下电磁信息泄漏检测难以提取有用信息的问题.分别通过
针对传统的高级接收机自主完好性监测(ARAIM)算法中完好性风险和连续性风险分配存在保守的问题,提出了一种基于粒子群优化(PSO)算法的完好性风险和连续性风险分配方法。将不同的分配策略作为算法中不同的粒子,选取不同故障子集对应的垂直保护级的加权和为适应度函数,每个粒子基于粒子群优化寻优原理更新其位置及速度直至满足条件,进而得到优化后的分配策略和对应的垂直保护级。通过双星座对所提方法进行验证,并与传
基于城市下垫面对大气污染物传输扩散的影响,选择北京市某处住宅集中区中2个开发年代与空间形态特征不同的街区,采用大气环境质量监测与计算流体力学风环境模拟相结合的研究方法,分析了城市街区尺度上“城市形态-风环境-大气污染”的三元关系与作用机制,为合理规划城市街区空间形态、建设绿色健康城市与和谐宜居社区提供科学依据.研究结果表明,风速是影响街区大气污染物质量浓度的主要因素之一,改善街区内部通风条件有利于大气污染物的迁移扩散.空间形态特征不同的2个街区的内部风环境呈现明显差异,建筑物密集、空间相对封闭的街区内部气