论文部分内容阅读
研究了共轭梯度算法、拟牛顿算法、LM算法三类常用的数值优化改进算法,基于这三类数值优化算法分别对BP神经网络进行改进,并构建了相应的BP神经网络分类模型,将构建的分类模型应用于二维向量模式的分类,并进行了泛化能力测试,将不同BP网络分类模型的分类结果进行对比.仿真结果表明,对于中小规模的网络而言,LM数值优化算法改进的BP网络的分类结果最为精确,收敛速度最快,分类性能最优;共轭梯度数值优化算法改进的BP网络的分类结果误差最大,收敛速度最慢,分类性能最差;