论文部分内容阅读
The key limiting factors to high-density culture of Porphyridium cruentum are the uptake of light energy and nutrient by the microalgal cells. Under the optimal conditions of carrier culture, both cell mass and cell density were increased significantly up to 5.2 g/L (DW) and 5.2×107/ml. Furthermore,the effects of the liquid circulation velocity, light intensity and initial cell density on cell mass productivity of P. cruentum were investigated in a 42 L internal loop airlift photobioreactor. Although the light intensity was as low as 100 μmol/(m2@s), the light damage or the photoinhibition phenomenon was observed under the culture condition of low initial cell mass (0.10 g/L, DW) and high liquid circulation velocity (0.30 m/s). However, a higher cell growth rate and a high cell mass productivity were achieved with the same conditions only at high initial cell mass (about 0.80 g/L, DW). Under the optimal conditions, the cell specific growth rate, cell mass volumetric and areal output rate reached to 0.95 d-1,0.80 g/(L@d) and 42.5 g/(m2@d) respectively. Finally, a method of nutrient feeding and gradual increase of light intensity in different cultural stages was developed, which further improved the cell mass, cell mass volumetric and areal output rate to 5.9 g/L, 1.2 g/(L@d) and 61.7 g/(m2@d) respectively.