论文部分内容阅读
研究了Krylov子空间广义极小残余算法(GMRES(m))的基本理论,特别是残余向量与Krylov子空间的关系.根据残余向量所满足的代数方程组,深入探讨算法的收敛性质与所选择的子空间的关系,指出大大量按模很小的特征值对应的特征向量的存在会降低算法的收敛速度,从而提出一种利用按模很小的特征值对应的特征向量扩充Krylov子空间的加速广义极小残余算法(AGMRES(m))、理论分析和数值结果都表明,算法是可靠和有效的.