论文部分内容阅读
针对随机噪声下滚动轴承多时期(初期、中期、晚期)故障诊断需求,提出OHF Elman-AdaBoost(output hidden feedback Elman-adaptive boosting)算法,以实现滚动轴承的精确故障诊断。采用集合经验模态分解(ensemble empirical mode decomposition,EEMD)对原始信号进行分解、降噪、信号重构。设计OHF Elman方法在Elman神经网络的基础上增加输出层对隐含层的反馈,提高了其对动态数据的记忆功能。选择OHF Elman