论文部分内容阅读
基于用户偏好的电视节目个性化推荐是一种内容的推荐算法。其中用户偏好的不确定性和描述上的模糊性是用户模型建立的难点。在此首先通过对样本用户过往观看记录数据进行分析,发现用户偏好存在一定的时不变性。把偏好在一定时间内不发生变化的用户称作置信用户,在这个基础上,建立基于节目特征向量空间的用户偏好模型,并提出基于用户偏好度模型的推荐算法。该算法通过用户观看视频的历史记录得到用户的偏好模型,并基于该偏好模型向用户推荐节目。仿真实验证明了算法的收敛性和有效性。