论文部分内容阅读
针对BP神经网络中采用的梯度下降法局部搜索能力强、全局搜索能力差和遗传神经网络中采用的遗传算法全局搜索能力强、局部搜索能力差的特点,提出了一种集梯度下降法和遗传算法优点为一体的混合智能学习法(HybridIntelligencelearningalgorithm),简称HI算法,并将其应用到优化多层前馈型神经网络连接权问题。对该算法进行了设计和实现,从理论和实际两方面证明混合智能学习法神经网络与BP神经网络和基于遗传算法的神经网络相比有更好的运算性能、更快的收敛速度和更高的精度。