论文部分内容阅读
关联规则挖掘的主要任务是根据对事务的统计找出项之间的关系。传统的挖掘算法要求项具有逻辑属性,并在挖掘过程中产生大量的中间项集,成为算法的瓶颈。给出一种基于关联路径树的表格数据组织形式,并采用模式指导的方式进行频繁项集挖掘,该方法不要求项具有逻辑属性,初始模式不同的项集组合迭代可以分配到不同的CPU完成,提高了算法的执行效率。该算法对美国1984年国会选举数据进行了实验,结果完全正确。