论文部分内容阅读
模拟机器人足球比赛(Robot World Cup,RoboCup)作为多Agent系统的一个理想的实验平台,已经成为人工智能的研究热点。传统的Q学习已被有效地应用于处理RoboCup中传球策略问题,但是它仅能简单地离散化连续的状态、动作空间。提出将神经网络应用于Q学习,系统只需学习部分状态一动作的Q值即可获得近似连续的Q值,就可以有效地提高泛化能力。然后将改进的Q学习应用于优化传球策略,最后在RoboCup中实现测试了该算法,实验结果表明改进的Q学习在RoboCup传球策略中的应用,可以有效提高传球的成