论文部分内容阅读
针对传统循环神经网络和卷积神经网络的缺点,搭建完全基于多头自注意力机制的Transformer蒙汉神经机器翻译模型。实验结果表明,该模型比基于LSTM的蒙汉翻译模型提高了9个BLEU值左右。这说明Transformer翻译模型在句子语义提取和语义表达方面优于LSTM翻译模型。同时在语料预处理阶段,还对中蒙文语料进行了不同粒度的切分。通过实验对比分析,蒙文进行BPE处理后的翻译结果优于对中文单独使用分词处理的结果;在较小语料库中,对中文进行分字处理效果优于分词效果。