论文部分内容阅读
土壤中的污染物成分复杂,其含量与复介电常数之间具有很强的非线性关系。以土壤样品复介电常数的实部、虚部分别作为输入,以其含水率、体密度和所含6种已知离子的浓度分别作为输出,建立BP人工神经网络。把吉泰兰地区的土壤样品数据分为训练样本集和检验样本集,网络训练后,其学习效果显示模型的性能很好,检验样本的预测结果也与实测值较好吻合,说明利用复介电常数和BP人工神经网络进行环境监测是一种好的方法。