涉案企业合规第三方机制的实践思考

来源 :中国检察官 | 被引量 : 0次 | 上传用户:zouyuefu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
2020年以来,我国检察机关以刑事司法激励为切入点推进涉案企业合规试点工作,在实践探索基础上创设了具有中国特色的第三方监督评估机制。应以社会各方协同治理为面向,确立我国涉案企业合规计划审查重点及研判合规成效标准的基本要素,畅通侦诉、行刑衔接机制,通过引入保险机制平衡涉案中小微企业资金匮乏与企业合规成本较高之间的张力,确保第三方监督评估机制行稳致远和检察职能充分有效发挥。
其他文献
目的:分析应用芒硝外敷与中药清胰承气汤联合治疗急性胰腺炎的临床疗效。方法:选取2019年10月-2020年12月期间因急性胰腺炎入院治疗的112例患者,随机分为治疗组(芒硝外敷与中药清胰承气汤联合治疗)与对照组(常规基础治疗),各56例。比较两组肛门恢复排气排便时间、治疗总有效率、腹部压痛消失时间及治疗前后C-反应蛋白(CRP)、白细胞(WBC)、尿淀粉酶(UAMY)、血清淀粉酶(AMS)。结果:
停车精度是影响高速磁浮交通系统运营效率的重要技术指标之一。尽管轮轨列车精确停车控制取得了较丰富的研究成果,但是,高速磁悬浮列车在牵引、定位、制动等方面与轮轨列车存在巨大差异,轮轨列车的研究成果不能直接应用于高速磁浮列车,因此,研究高速磁浮列车的精确停车控制具有重要的理论意义及应用价值。本文借鉴轮轨列车的研究成果,针对磁悬浮列车特点,设计了高速磁浮列车精确停车制动控制器。首先,针对高速磁浮的特点,建
大力发展城市公共交通,优化道路交通资源配置是缓解城市交通拥堵的重要举措,城市地面公交作为城市公共交通系统的重要组成部分,作用更是举足轻重。在城市地面公交运营过程中,公交串车是一种常见的现象,其所具有的向后传播性和持续影响性极大地限制了公交运营效率和服务水平提升的上限。同时,在实际生活中,交通方式服务质量的高低逐渐成为人们出行方式选择的一个重要衡量标准。因此,提高对公交串车问题的认识,采取合理的方式
卷积神经网络(Convolutional Neural Network,CNN)作为深度神经网络中典型的网络类型,在人工智能领域得到广泛的应用,又因其以大规模参数训练为代表,属于计算密集型和访存密集型的任务,这就对设计专用的CNN训练的处理器体系架构提出了要求。现今面向神经网络训练处理器通常是具有大量并行运算资源的片上多核处理器,计算速度与访存速度的严重不均衡导致“存储墙”问题。由于CNN训练的访
重症急性胰腺炎在急腹症领域具有较高的患病比例,患者一般起病较急、病情凶险、变化迅速,再加上相关并发症较多,易导致腹膜炎、继发性感染、休克等问题,病死率相对较高。常规西医治疗重症急性胰腺炎已经步入了瓶颈阶段,治疗效果不够理想、治疗费用相对较高、住院时间过长等仍是临床重点关注的问题。经过诸多专家和学者不断研究与探索,发现中西医结合治疗重症急性胰腺炎有良好效果。现从中西医结合治疗重症急性胰腺炎方向进行分
弓网之间接触压力直接影响列车受流性能的好坏,因而需要定期测量并调整受电弓的静态接触压力。便携式受电弓检测仪可用于测量静态接触压力随升降弓高度变化的静态特性曲线,适合日常检修过程使用。本研究的目的在于分析现有便携式受电弓检测仪机械结构方面存在的缺点,在此基础上,提出一种改进的便携式受电弓检测仪机械结构方案,提高检测仪的测力精度,减小结构尺寸。对现有便携式受电弓检测仪进行分析。存在以下问题:结构尺寸较
为进一步开展杂环缓蚀剂的合成研究,实验室选取了含有呋喃环的糠酸作为缓蚀剂合成原料,与二乙烯三胺在二甲苯携水条件下合成了糠酸咪唑啉,并经进一步复配后获得糠酸咪唑啉缓蚀剂。通过配置油田高矿化度模拟水样并开展动态挂片腐蚀评价实验,结果表明该具备呋喃环和咪唑啉环的双杂环缓蚀剂针对该较高流速和较高CO2分压条件下的腐蚀工况具有良好的缓蚀效果。
金属等离子体推进器是一种利用真空电弧烧蚀阴极金属材料产生的金属等离子体作为推力源的电推进器,具有体积小、质量轻、可靠性高等特点。而目前真空放电生成的等离子体源的喷射性能较差,包括等离子体密度较低,运动能量较小,导致推进器形成的推力相对较小,实际应用受到限制。因此,研究新型、高效的金属等离子体推进器,探究能够有效提高等离子体特性和推进性能的新型推进方式具有重要意义。本研究主要以金属等离子体推进器为研
随着越来越多的外国人开始学习汉语,汉语教学的需求也在不断增加。语言教学在语言学习过程中有着至关重要的作用,它可以帮助学习者更好地掌握正在学习的语言。通过建立良好的语言学习平台,及时地发现学习者书写的内容中存在的问题,进行个性化地修改语法错误并给出指导意见和建议,对于提高语言学习和教学的效率具有非常重要的意义。由于深度学习的兴起和蓬勃发展,自然语言处理发生了重大的变革。语法改错作为自然语言处理的重要
包括图像语义分割和图像实例分割在内的图像分割任务是计算机视觉领域的重要课题。传统图像分割方法往往需要先人工提取特征,再进行分割,特征的表征能力不够强,因此传统方法的效率和精度都较低。随着深度学习的迅猛发展及其在计算机视觉领域的广泛应用,出现了基于深度神经网络的图像分割方法,端到端的训练方式和大规模的可学习参数使得图像分割相对传统方法的效率和精度都大大提升。然而,复杂的网络结构和大量参数带来的计算量