论文部分内容阅读
针对基于特征匹配的目标识别算法复杂度高、难以实时处理的问题,提出基于快速鲁棒性特征(SURF)的快速特征匹配算法。通过应用双阈值顺序聚类算法对特征点进行聚类,并对每一个聚类建立k-d搜索树,采用优先搜索算法匹配模板与图像的特征点,提高了算法实时性。采用RANSAC鲁棒估计算法消除错误匹配点对,计算模板与图像平面之间的单应矩阵,进而实现对目标的准确识别定位。仿真实验证明了算法的有效性和实用性。