论文部分内容阅读
针对锅炉NO_x排放量难以准确预测的问题,提出了一种新的NO_x排放预测方法,利用改进的量子自适应鸟群算法(QBSA)和快速学习网(FLN)进行综合建模,得到锅炉NO_x排放浓度模型。将QBSA与基本鸟群算法(BSA)、差分进化算法(DE)、粒子群算法(PSO)进行比较,并通过仿真实验证明了其具有更好的寻优精度和更快的收敛速度。最后采用不同工况下的样本数据检测QBSA-FLN与BSA-FLN模型的预测效果,实验结果表明,QBSAFLN具有更高的预测精度和泛化能力,可以更准确地预测NO_x排放量。