论文部分内容阅读
提出一种基于遗传算法和神经网络预测法相结合的再励学习方法,利用遗传算法对全局进行最优解搜索,将进化过程中产生的数据用来训练神经网络预测器,当再励学习逼近最优解时,利用预测网络估计动作网络的参数、结构与系统响应之间的映射关系,用预测网络逼近最优解的能力引导遗传算法在局部向最优解快速逼近,以解决遗传算法局部振荡问题,从而实现快速学习的能力。将其应用于矢量控制交流电机的速度环控制器自学习中,仿真实验验证了该算法的有效性。