基于视觉深度学习的机器人环境感知及自主避障

来源 :电子测量技术 | 被引量 : 0次 | 上传用户:taishao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
动态避障是机器人实现自主移动、安全行走的关键,面对复杂多变的室内场景,机器人需要能够及时检测到障碍物并动态规划安全的行走路线。本文利用RGB-D深度相机和IMU单元建立机器人环境感知系统,为机器人提供三维视觉和姿态角度等多模态信息。首先构建基于YOLOv4改进的目标检测模型,通过YOLOv4-M目标检测算法对彩色图像中的障碍物进行识别;将彩色图与深度图对齐,获取障碍物的尺寸信息以及机器人与障碍物的空间距离;根据机器人的实时姿态角度和对周围障碍物的识别信,建立基于改进的人工势场法避障决策模型,解决总势
其他文献
以YOLOv5s网络模型为基础,引入注意力机制CBAM模块,基于Ghost卷积模块重构网络模型的卷积操作,提出一种面向扶梯不安全行为的改进型深度学习检测算法.然后,在自主收集的扶梯不安全行为数据集上对其进行训练评估.结果表明,所提算法在检测精度有所提高的同时,大幅减少了检测所需的参数量和计算量.
期刊