论文部分内容阅读
为提高深度学习神经网络运行速度,满足智能驾驶对算法实时性的要求,基于一种一体化实时目标检测算法YOLO和一种目标检测网络模型Faster RCNN,提出一种结合两者特点的实时目标检测神经网络。该网络保留区域卷积神经网络(R-CNN)算法的二次检测模式和区域生成神经网络RPN,去掉先验框,采用YOLO直接预测位置。结合Mask R-CNN中的ROI-Align方法进行二次位置修正,减少了Faster R-CNN中ROI-pooling所带来的位置预测偏差。对改进后的网络在KITTI数据集上进行测试,结