论文部分内容阅读
与传统的整数阶黏滞波动方程相比,分数阶拉普拉斯算子黏滞方程能更准确地匹配目前广泛使用的常Q模型,而且分数阶黏滞波动方程中控制振幅衰减和相位变化的算子是显式分离的,这对于发展稳定的衰减补偿逆时偏移算法至关重要。首先基于时间域二阶位移形式的常分数阶拉普拉斯算子黏滞声波方程,推导了一阶速度-压力形式常分数阶拉普拉斯算子黏滞声波方程;为了模拟更加真实的振幅变化信息,在新的黏滞声波方程中考虑了密度空变的影响;为了避免由傅里叶变换的周期性而引入的虚假反射,提出了一种适用于分数阶黏滞声波方程的卷积型完全匹配层(CPML