基于规则前件发生树匹配的数据流预测方法研究

来源 :通信学报 | 被引量 : 2次 | 上传用户:idlerman
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现有基于规则匹配的数据流预测算法存在前件发生定义不准确、前件相关性未考虑、预测结果描述不严谨等不足,造成预测过程效率较低、精度不高等问题。提出基于前件发生树的概率叠加预测算法,定义区间最小非重叠发生,避免前件的错误匹配;通过前件的合并构建前件发生树,提高前件发生的搜索效率;基于概率叠加的思想计算后件的发生区间和发生概率,使预测精度进一步提高。理论分析和实验结果表明,该算法具有较高的时空效率和预测精度。
其他文献
音乐教育不但有助于启发人的想象能力和创造能力,激发学习新知识的能力,而且与思想教育、道德伦理教育、行为规范教育、审美教育,智能教育、体育教育互相配合,互相渗透,对德
微博中的垃圾用户非常普遍,其异常行为及生产的垃圾信息显著降低了用户体验。为了提高识别准确率,已有研究或是尽可能多地定义特征,或是不断尝试提出新的分类检测方法;那么,