Identifying influential nodes in social networks via community structure and influence distribution

来源 :数字通信与网络(英文版) | 被引量 : 0次 | 上传用户:saisai214
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
This paper aims to effectively solve the problem of the influence maximization in social networks.For this purpose,an influence maximization method that can identify influential nodes via the community structure and the influence distribution difference is proposed.Firstly,the network embedding-based community detection approach is developed,by which the social network is divided into several high-quality communities.Secondly,the solution of influence maximization is composed of the candidate stage and the greedy stage.The candidate stage is to select candidate nodes from the interior and the boundary of each community using a heuristic algorithm,and the greedy stage is to determine seed nodes with the largest marginal influence increment from the candidate set through the sub-modular property-based Greedy algorithm.Finally,experimental results demonstrate the superiority of the proposed method compared with existing methods,from which one can further find that our work can achieve a good tradeoff between the influence spread and the running time.
其他文献
目的:观察柴胡加龙骨牡蛎汤联合电针四关穴治疗广泛性焦虑的临床疗效.方法:收集符合诊断标准的60例广泛性焦虑患者,予柴胡加龙骨牡蛎汤,联合电针四关穴(双侧合谷、太冲)治疗2
孙升云教授是暨南大学附属第一医院中医科主任医师,博士研究生导师,广东省名中医,《暨南大学学报·医学版》主编,广东省第三批名中医师承项目指导老师.孙教授从事临床、科研
目的分析肺恶性血管周上皮样细胞肿瘤(PEComa)合并腺癌的发病机制、临床表现、诊断、治疗及预后。方法分析2020年8月南方医科大学附属东莞人民医院病理科确诊的1例肺原发恶性PEComa合并腺癌病例,整理患者的临床资料、病理诊断要点、治疗方案及预后等,并进行文献复习。首先以“恶性血管周上皮样细胞肿瘤”+“肺”+“腺癌”检索中国知网及万方医学数据库,未检索到相关报道。随后以“肺恶性血管周上皮样细胞肿