论文部分内容阅读
研究了非线性环境中的集中式多传感器多目标跟踪问题,提出了一种基于S-D分配的集中式多传感器不敏滤波算法。算法通过广义S-D分配技术实现每个传感器中的量测与目标的数据关联,求得所有可能互联中的最佳划分,然后按照顺序多传感器联合概率数据互联算法,依次处理最佳划分中各传感器源于同一目标的量测,在此基础上通过不敏卡尔曼滤波(UKF)解决非线性系统中的目标跟踪问题.最后给出了该算法与MSJPDA/EKF算法的仿真比较,结果表明该算法具有更高的稳定性和跟踪精度.