论文部分内容阅读
针对已有车牌识别中技术存在的不足,提出了一种多分类器——模板匹配和神经网络并行计算的识别算法,这一方法对于汉字、英文和数字混杂、数字的识别,分别采用粗分类和面向汉字的双进程计算方法、面向字母的双进程计算方法、简单的数字神经网络方法。这些方法的采用可以缩小检索范围,充分利用模板匹配和神经网络算法各自的识别优点,提高车牌字符识别准确率,并进一步提高运算速度。