论文部分内容阅读
PID控制是一种根据系统的误差,使用比例、积分、微分计算出控制量调节系统误差的控制方法,PID控制器由于不需要建立精确的系统数学模型而广泛应用于工业控制的各个领域。但是经典的PID控制方法的三个参数值通常是人工赋值,而人工赋值往往依赖于经验,因此控制效率较低。BP神经网络具有很强的泛化能力,可以逼近任意的非线性函数,本文使用BP神经网络调节PID控制器的参数。但是经典BP神经网络需要不断地调节权值,因此收敛速度很慢,本文利用动量常数加速神经网络的训练。仿真试验验证了本文提出的使用加速BP神经网络调节PID