论文部分内容阅读
A decoupling-estimation signal parameters via rotarional invariance technique(ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output(MIMO) radar.Two steps are carried out in this method.The decoupling operation between angle and mutual coupling estimates is realized by choosing the auxiliary elements on both sides of the transmit and receive uniform linear arrays(ULAs).Then the ESPRIT method is resilient against the unknown mutual coupling matrix(MCM) and can be directly utilized to estimate the direction of departure(DOD) and the direction of arrival(DOA).Moreover,the mutual coupling coefficient is estimated by finding the solution of the linear constrained optimization problem.The proposed method allows an efficient DOD and DOA estimates with automatic pairing.Simulation results are presented to verify the effectiveness of the proposed method.
A decoupling-estimation signal parameters via rotarional invariance technique (ESPRIT) method is presented for multi-target localization with unknown mutual coupling in bistatic multiple-input multiple-output (MIMO) radar. Two steps are carried out in this method. The decoupling operation between angle and mutual coupling estimates is realized by choosing the auxiliary elements on both sides of the transmit and receive uniform linear arrays (ULAs) .Then the ESPRIT method is resilient against the unknown mutual coupling matrix (MCM) and can be directly utilized to estimate the direction of departure (DOD) and the direction of arrival (DOA). Moreover, the mutual coupling coefficient is estimated by finding the solution of the linear constrained optimization problem. The proposed method allows an efficient DOD and DOA estimates with automatic pairing. Simulation results are presented to verify the effectiveness of the proposed method.