论文部分内容阅读
土壤作为农作物生长的主要营养来源,氮是植物生长的重要元素,有效评价土壤氮素含量可以促进配方施肥的发展。提出主成分分析、注意力机制和长短时记忆神经网络相结合的模型(PCA-Attention-LSTM)来监测土壤的氮素含量。采用PCA(主成分分析)对数据进行处理,提取影响土壤氮含量的关键影响因子,降低模型向量输入的维数,利用注意机制突出预测中的关键输入特征。在Keras深度学习框架的基础上搭建PCA-Attention-LSTM的网络模型,实现对未来2 h土壤氮含量的精监测。最后,以黑龙江省依安甜菜养